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Information retrieval among different modalities becomes a significant issue with many promising
applications. However, inconsistent feature representation of various multimedia data causes the
‘‘heterogeneity gap’’ among various modalities, which is a challenge in cross-modal retrieval. For
bridging the ‘‘heterogeneity gap,’’ the popular methods attempt to project the original data into a
common representation space, which needs great fitting ability of the model. To address the above
issue, we propose a novel Graph Representation Learning (GRL) method for bridging the heterogeneity
gap, which does not project the original feature into an aligned representation space but adopts a
cross-modal graph to link different modalities. The GRL approach consists of two subnetworks, Feature
Transfer Learning Network (FTLN) and Graph Representation Learning Network (GRLN). Firstly, FTLN
model finds a latent space for each modality, where the cosine similarity is suitable to describe their
similarity. Then, we build a cross-modal graph to reconstruct the original data and their relationships.
Finally, we abandon the features in the latent space and turn into embedding the graph vertexes
into a common representation space directly. During the process, the proposed Graph Representation
Learning method bypasses the most challenging issue by utilizing a cross-modal graph as a bridge to
link the ‘‘heterogeneity gap’’ among different modalities. This attempt utilizes a cross-modal graph
as an intermediary agent to bridge the ‘‘heterogeneity gap’’ in cross-modal retrieval, which is simple
but effective. Extensive experiment results on six widely-used datasets indicate that the proposed GRL
outperforms other state-of-the-art cross-modal retrieval methods.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Multimedia data have greatly enriched people’s life with the
ramatic development of multimedia devices and information
ransmission technology. In recent years, people have witnessed
xplosive growth in various types of multimedia data, such as
mage, text, audio, video, and 3D model. These different types
f multimedia data usually deliver similar semantic information
uring the transportation of social networks, which is consistent
ith the research of cognitive science. For example, our human
rain can apperceive the outside environment by multiple sen-
ory organs, such as the ear and eye (McGurk & MacDonald,
976). Therefore, it is of great realistic significance to analyze the
ulti-modal data and exploit the semantic relationship among
arious modalities. Cross-modal retrieval becomes a highlighted
esearch topic to analyze the relationship between different types
f multimedia data. The early single-modal retrieval performs
he retrieval task in a single modality, such as retrieving image
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by an image (Datta, Joshi, Li, & Wang, 2008), while the cross-
modal retrieval allows the modality of the retrieved results and
the query to be different, such as retrieving image by a text
or retrieving text by an image (Peng, Huang, & Zhao, 2017).
However, there exists a vast ‘‘heterogeneity gap’’ among differ-
ent modalities, which brings great difficulties for cross-modal
retrieval. The ‘‘heterogeneity gap’’ means that the feature spaces
of different modalities are different, so the similarity of different
modal instances cannot be measured directly.

For bridging the ‘‘heterogeneity gap’’, most existing cross-
modal retrieval methods aim at mapping the features of different
modalities into a feature-shared subspace. This idea is based on
a hypothesis that there exists a common semantic space, where
the semantic similarity measurement is suitable for all instances
of all modalities. Therefore, many cross-modal retrieval methods
have been proposed to learn the aligned representation of various
modalities. For example, early works, such as Canonical Corre-
lation Analysis (CCA) (Hotelling, 1936) and Cross-modal Factor
Analysis (CFA) (Li, Dimitrova, Li, & Sethi, 2003), mainly adopt
linear projection to fitting the aligned representation learning
process. This branch of cross-modal retrieval methods is classi-
fied as traditional method. However, the aligned representation
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earning process is highly complex and nonlinear, which is hard
or traditional methods.

In recent years, inspired by the great success of deep learning,
any Deep Neural Networks (DNNs) based methods have been
roposed to solve cross-modal analysis issue. Compared with tra-
itional cross-modal retrieval methods, these approaches show
uperior performance in cross-modal retrieval tasks because of
he enormous capacity of nonlinear learning. Besides, adversar-
al learning gradually obtains great concern since Goodfellow,
ouget-Abadie, Mirza, et al. (2014) proposed Generative Adver-
arial Networks (GANs). Motivated by the progress of GANs, many
esearchers attempt to apply the adversarial learning mecha-
ism into DNNs based cross-modal retrieval models. Adversarial
earning-based methods (Xu et al., 2018; Zhang & Peng, 2019)
chieve excellent retrieval accuracy compared with other ap-
roaches. Furthermore, introducing both adversarial learning and
NNs into aligned representation learning becomes a popular
trategy in cross-modal retrieval. However, because adversarial
earning is not suitable for graph embedding strategy, we do
ot introduce this idea in the proposed method. Besides, hash-
ng coding-based methods also achieve remarkable cross-modal
etrieval performance, such as Deng et al. (2019), Deng, Yang,
iu, and Tao (2019), Yang et al. (2018) and Zhang, Lai, and Feng
2018). Their main idea is to learn deep representations for var-
ous modalities and then encode the features into a semantic
hared hamming space by hashing coding. Various technologies
an be taken into account in learning deep representations, such
s adversarial learning, and generative network. Hashing coding-
ased methods are an essential branch in large-scale information
etrieval.

The graph model shows high potential capacity in machine
earning because of its characteristic data structure, which can
resent the connections among different data. For example, the
ecommendation system in social networks aims at mining the
referred contents by studying the users’ previous action net-
orks. Therefore, some researchers attempt to introduce graph
odel into the aligned representation learning. For example, Wu,
ang, and Huang (2018) introduce a semantic graph as additional

nformation to preserve the local and global semantic struc-
ure during the aligned representation learning process. Besides,
u et al. (2018) realize the cross-modal retrieval by modeling
he text with graph convolutional network, and Wang et al.
2018) introduce graph regularization into objective function in
odality-independent feature learning for cross-modal retrieval.
hese methods adopt graph as an additional constraint for aligned
epresentation learning, which also improves the ability of shared
epresentation learning.

Inspired by their works, in this paper, we propose a Graph
epresentation Learning (GRL) approach to accomplish shared
epresentation learning for cross-modal retrieval. On the con-
tructed cross-modal graph, each vertex represents a multimedia
nstance, and the connections among different vertexes indicate
he similarity information of the original multimedia data. The
RL views the cross-modal graph as a bridge to link the ‘‘hetero-
eneity gap’’ among different modalities and then adopts a graph-
mbedding layer to project different vertexes to low dimensional
epresentations. The framework of the proposed model is pre-
ented in Fig. 1. Specifically, we adopt the pre-trained models to
xtract the features of different modalities. Then, an FTLN model
or each modality is applied to transfer the original features into
latent space. This step is designed to make the features suitable
or graph construction. The FTLN models are optimized by the
riplet loss function with cosine distance. At last, we adopt a
raph-embedding layer to learn the modality-invariant features
or all instances. In optimizing of the proposed GRLN, the overall

bjective function contains two parts, supervised learning loss

144
and unsupervised learning loss. Category constraint supervises
our model to learn more discriminating features in the label
space. During the unsupervised learning process, the graph local
structure optimization loss is adopted to keep the neighboring
instances close in the embedded space.

The previous works aim to project the original multimedia
data into aligned representation space by linear learning or deep
neural networks. However, the proposed method does not di-
rectly process the original data but reconstructs the data and their
relationships into a cross-modal graph and then utilizes the graph
structure to learn the aligned representation. The proposed GRL
utilizes a cross-modal graph as a bridge to link the ‘‘heterogeneity
gap’’. Compared with previous works, the proposed method is
more straightforward but more effective, which does not need
plenty of computing resources and converges rapidly.

Compared with previous researches, the main contributions of
our work can be summarized as follows.

• A novel cross-modal retrieval method named Graph Repre-
sentation Learning is proposed to bridge the vast ‘‘hetero-
geneity gap’’ among various modalities. We represent the
original multimedia data by a cross-modal graph, in which
each vertex denotes an original multimedia instance, and
the connections indicate the semantic similarity informa-
tion. Then, we adopt a node-to-vector strategy to embed
every node into a low-dimensional vector. Because we do
not process the original data, the proposed method can
effectively project the original various modal data into an
aligned representation space, which is an effective attempt.
Sufficient experimental results indicate that the proposed
method obtains the best performance and makes significant
improvements compared to previous works.
• We propose a pre-aligning framework named Feature Trans-

fer Learning Network before constructing the cross-modal
graph, aiming to transfer the original feature to an aligned
latent space. In the latent space, cosine similarity is adopted
to construct the k-nearest neighbor graph. In the exper-
iment, we adopt different Feature Transfer Learning Net-
works to verify the feasibility of the proposed pre-aligning
strategy. The experimental results show that this is an
efficient mechanism for improving cross-modal retrieval
performance.
• For optimizing the GRLN model, adopting category con-

straint with AMSoftmax function (Wang, Cheng, Liu, & Liu,
2018) ensures the embedded representation is discrimina-
tive in the label space. Also, a simple but effective unsuper-
vised objective function is proposed to optimize the local
graph structure. This function adopts Laplacian Eigenmaps
as the graph optimization term, which aims at keeping the
embedding of two nodes close if they are similar in the
original feature space.

The structure of this paper is organized as follows. The second
section draws the related work in cross-modal retrieval. The
third section presents the details of the proposed GRL method.
The detailed experimental results and analyzes are shown in the
fourth section. An overall conclusion of the paper is in the final
section.

2. Related work

In this section, we review the related works of cross-modal
retrieval. As mentioned before, the most challenging problem of
cross-modal retrieval is how to bridge the ‘‘heterogeneity gap’’
among different modalities. Therefore, the mainstream of cross-
modal retrieval approaches is common space learning, which
can represent these different modal data in semantic shared



Q. Cheng and X. Gu Neural Networks 134 (2021) 143–162
Fig. 1. The overall framework of the proposed Graph Representation Learning method for cross-modal retrieval.
representation space. The similarity among different instances
can be calculated directly by common similarity measurements,
such as cosine distance and Euclidean distance. Existing cross-
modal retrieval methods include traditional methods, DNN-based
methods, and graph regularization based methods.

2.1. Traditional methods

Traditional methods mainly aim at learning a linear projection
matrix for feature shared space, which is the basic paradigm
and precedent of common space learning. For instance, Canonical
Correlation Analysis (CCA) (Hotelling, 1936) proposed by Hardoon
et al. is one of the most representative works in cross-modal
retrieval. CCA learns a shared space by maximizing the pairwise
correlations between different modal data. As an early classical
work, CCA has many variants such as Kernel CCA
(KCCA) (Hardoon, Szedm’ak, & Shawe-Taylor, 2004), Semantic
Correlation Matching (SCM) (Pereira et al., 2013), Deep CCA
(DCCA) (Andrew, Arora, Bilmes, & Livescu, 2010), Multi-view
CCA (Gong, Ke, Isard, & Lazebnik, 2014), and multi-label CCA
(ml-CCA) (Ranjan, Rasiwasia, & Jawahar, 2015), which are the
most popular baseline models in cross-modal retrieval. To be
specific, the original CCA is an unsupervised method for cross-
modal retrieval, which does not utilize the semantic information.
Therefore, the researchers attempt to introduce semantic super-
vision into the common representation learning model, such as
Semantic Correlation Matching (SCM) and multi-label CCA (ml-
CCA) (Ranjan et al., 2015). Pereira et al. propose SCM, which
combines traditional correlation matching (CM) and semantic
matching (SM). Multi-label CCA (Hotelling, 1936), an extended
version of CCA, is designed to deal with multiple label cross-
modal retrieval problem. Multi-view CCA (Gong et al., 2014)
takes ground-truth semantic labels as the third view of additional
supervision. Analogously, another classical statistical correlation
analysis for cross-modal retrieval is Cross-modal Factor Analysis
(CFA) (Li et al., 2003), which directly minimizes the Frobenius
norm of different modalities in the aligned representation space.
Wang, He, Wang, Wang, and Tan (2015) solve the cross-modal
retrieval problem by introducing a joint feature selection and
subspace learning (JFSSL) method, combining subspace learning
for different modalities and norms for coupled features selection.
In recent years, researchers try to incorporate extensive informa-
tion into aligned representation learning in order to learn a more
145
robust linear projection, such as Partial Least Squares (Rosipal
& Kramer, 2006) and adaptive semantic hierarchy (Kang, Xiang,
Liao, Xu, & Pan, 2015). Deng, Tang, Yan, Liu, and Gao (2015)
proposed discriminative dictionary learning with a common label
alignment based method to realize cross-modal retrieval. Due to
the perfection of linear projection based common representation
learning, traditional methods have made significant progress.
However, due to the limited fitting capacity of linear projection,
the problematic ‘‘heterogeneity gap’’ cannot be solved directly by
linear projection.

2.2. DNNs-based methods

With the advancement of deep learning, deep neural networks
(DNNs) have shown significantly superiority in many challeng-
ing tasks, such as image classification (Ciresan, Meier, Masci,
Maria Gambardella, & Schmidhuber, 2011) and object detec-
tion (Ren, He, Girshick, & Sun, 2015). DNNs have a great non-
linear fitting capacity, which makes it successfully applied in
cross-modal retrieval. For example, Andrew et al. (2010) intro-
duce DNNs into the traditional CCA, named DCCA, to improve
the original CCA’s performance. Srivastava and Salakhutdinov
(2012) introduce a deep belief network (Multimodal DBN) into
cross-modal retrieval architecture for learning a joint represen-
tation of multimodal data. Wei et al. (2017) fulfill cross-modal
retrieval by adopting DNN-based visual features extracted by the
pre-trained CNN model large-scale image dataset, which shows
the superiority of deep feature in cross-modal retrieval. Peng,
Huang, and Qi (2016) propose a two-stage learning strategy,
cross-media multiple deep networks (CMDN), to exploit the com-
plex correlation of different modalities. The first stage generates
the separate representation of each modal instance, and the
second stage learns the shared representation by a deep two-
level network in a hierarchical manner. The cross-modal hybrid
transfer network (CHTN) (Huang, Peng, & Yuan, 2017) introduces
transfer learning to improve cross-modal retrieval performance.
Besides, MNiL (Zhang, Ma, Li, Huang, & Tian, 2017) is a DNN-
based method that combines LSTM and ResNet for large-scale
cross-modal retrieval.

The DNNs based methods mainly contain two types in cross-
media retrieval. The first type directly makes use of the great
non-linear ability of projection to realize common space learn-
ing, while the second type utilizes the capacity of DNNs and
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ombines other learning strategies, such as adversarial learning.
s is known, adversarial learning has been successfully applied
n various tasks with the development of generative adversarial
etworks. Under this circumstances, many researchers attempt
o apply this effective mechanism in the cross-modal retrieval
odel, such as Gu, Cai, Joty, Niu, and Wang (2018), Huang, Peng,
nd Yuan (2020), Tzeng, Hoffman, Saenko, and Darrell (2017)
nd Wang, Yang, Xu, Hanjalic, and Shen (2017). Specifically,
ang et al. (2017) combine the idea of adversarial learning

nd triplet constraint to learn the modality-invariant represen-
ations for different modal data, named Adversarial Cross-modal
etrieval (ACMR). The modal-adversarial hybrid transfer net-
ork (MHTN) proposed by Huang et al. (2020) is also based on
dversarial learning. MHTN consists of two subnetworks, modal-
haring knowledge transfer subnetwork and modal-adversarial
emantic learning subnetwork. Adversarial discriminative domain
daptation (ADDA) (Tzeng et al., 2017) combines discrimina-
ive modeling and GAN-based loss for domain adaptation task,
hich shows more excellent performance than other methods.
u et al. (2018) incorporate bi-modal generative models, text-to-
mage generative, and image-to-text generative models into the
ross-modal feature embedding, which can learn both the global
bstract feature and the local features over texts and images.
eng et al. propose cross-modal generative adversarial networks
CM-GANs) (Peng & Qi, 2019) to learn discriminative common
epresentation for bridging the heterogeneity gap. Generally,
ombining DNNs and GANs becomes the most popular strategy
or shared space learning in cross-modal retrieval.

.3. Graph related methods

In cross-modal retrieval, another notable strategy is introduc-
ng a graph into the model construction process. Graph regular-
zation is an effective mechanism in semi-supervised learning,
hich considers the problem as labeling a partially labeled graph.

n literature Zhai, Peng, and Xiao (2014), Zhai et al. propose
joint representation learning (JRL) method that can integrate

he sparse and semi-supervised regulation for different models
nto a unified optimization problem. Specifically, they construct
eparate graphs for up-to five media types, in which the edge
eights denote affinities of labeled and unlabeled data of the
ame media type. Peng, Zhai, Zhao, and Huang (2016) propose a
emi-supervised cross-modal feature learning method with uni-
ied patch graph regularization (S2UPG). S2UPG constructs the
ross-media graph for all types of media data, which contributes
o exploiting multi-level correlations of cross-media data. Many
ecent works (Liang, Li, Cao, He, & Wang, 2016; Wang et al.,
018) introduce graph regularization as an essential part of their
ross-modal retrieval models, which can preserve the intra-modal
nd inter-modal affinity relationships. Besides, Xu, Li, Yan, et al.
2019) combine graph convolutional networks with hashing for
ross-modal retrieval.
The above summarization indicates that current cross-modal

etrieval methods are mainly based on common subspace learn-
ng. Many researchers have proposed various approaches to
chieve this goal, including traditional methods, DNNs based
ethods, and graph-related methods. The graph-related methods
nly use the graph regulation term as an additional constraint to
btain better retrieval performance. Compared with their meth-
ds, the proposed GRL adopts the cross-modal graph as a bridge
o link different modalities, in which the graph structure indicates
he affinity relationship among different modal instance. Then,
mbedding each vertex into a feature vector plays the role of
earning the shared representations of all instances.
146
3. The proposed method

3.1. Problem formulation

For each dataset, it consists of N instances belonging to T0
modalities, denoted as {oM0 , . . . , oMP , . . . , oMT0 }, where MP is the
modal type such as text, image, audio, video, etc. A one-hot vector
of label yi = [yi1, yi2, . . . , yiC ] ∈ RC , where C is the number of
all categories in each dataset, is assigned to each media instance.
All instances of each modality are divided into three sub-datasets
randomly, N0 pairs of instances for training, N1 pairs of instances
for validating, and N2 pairs of instances for testing. The goal
of the proposed method is to find an aligned representation
space for all instances, where the similarities of instances can
be denoted by Euclidean distance or cosine similarity. The basic
idea of the proposed model is shown in Fig. 2. To be specific,
the proposed method consists of two main subnetworks, Fea-
ture Transfer Learning Network (FTLN) and Graph Representation
Learning Network (GRLN). The FTLN aims to find a latent space for
every modality before constructing the cross-modal graph, where
the cosine similarity is suitable to represent the similarity of the
instances. Then, the GRLN formulates a graph-embedding model
for embedding all vertexes into a low-dimensional latent space,
where each vertex represents a multimedia instance.

Specifically, the FTLN consists of several networks, which is
determined by the number of modalities. The FTLN has various
implementations, such as multiple fully-connected layers and
transfer learning. For better presentation, we adopt multi-layer
fully-connected layers to transfer the original feature to a latent
space. As follows,

(HM , . . . ,HMp , . . . ,HMT0 )

= f (oM0 , . . . , oMP , . . . , oMT0 ; θ0, . . . , θP , . . . , θT0 ),
(1)

where HMp is the adjusted feature of the Mp modality in latent
space and θP is the network learnable parameters of the Mp
modality. The cross-modal graph is constructed from the adjusted
features HMp by cosine similarity.

During graph embedding learning, each vertex of the con-
structed graph is projected to a specific vector. The similarity of
instances among various modalities can be represented by cosine
similarity. Then, the retrieval results of a query can be obtained
by ranking the similarities. The following formula abstracts these
sub-processes.

(µM0 , . . . ,µMp , . . . ,µMT0 ) = f (HM0 , . . . ,HMP , . . . ,HMT0 ; θ, θ̂ ),
(2)

where µMP is the hidden representation of MP modality, θ is the
learnable parameter matrix of the embedding layer and θ̂ is the
learnable parameters of the semantic classification sub-network.

3.2. Feature Transfer Learning Network

As mentioned before, we need to construct a k-nearest neigh-
bor cross-modal graph by cosine similarity. However, as a matter
of experience, the cosine similarity may not be the most proper
similarity measure metric for the original BOW feature and the
original VGG19 feature. Therefore, we adopt a pre-aligning strat-
egy named FTLN to adjust the distribution of the original feature.
In theory, the FTLN can have various types of networks to learning
the latent representation. To illustrate accurately, we adopt fully
connected layer as the FTLN, as shown in Fig. 3. To ensure the
latent space features be suitable for cosine similarity measure-
ment, we aim to project these features into a new latent space. To
be specific, taking image modality as an example, we first obtain
the original high-level representation oi . Then, the model adopts
I



Q. Cheng and X. Gu Neural Networks 134 (2021) 143–162

t
o
i
h

m
t
l
i
t
s
l
a
m
t
d

Fig. 2. The general idea of the proposed approach is to achieve modality-invariant embedding for different modality instances with the help of a latent space.
Fig. 3. The detailed framework of the Feature Transfer Learning Network.
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he triplet ranking loss function to maximize the cosine similarity
f different categories and minimize the cosine similarity of the
nstances belonging to the same class. Then, we can obtain the
idden feature HI of image modality.
As is known to all, the triplet ranking loss needs a distance

etric in its function expression. It should be noted that all dis-
ances between the mapped latent representations HI are calcu-
ated by cosine distance. The reason for choosing cosine similarity
nstead of Euclidean distance is that cosine similarity considers
he angle of two vectors while Euclidean distance considers the
patial distance. Compared with Euclidean distance, cosine simi-
arity plays a vital role in many tasks, such as image classification
nd information retrieval, because of its robustness. What is
ore, we construct the cross-modal graph by cosine similarity in

he next step. Therefore, the distance of triplet loss adopts cosine
istance in the FTLN model, as follows.

d(vi, vj) = cos⟨hI
i, h

I
j⟩

=
fv(oIi, θv)T · fv(oIj, θv)fv(oIi, θv)

 · fv(oIj, θv)
 .

(3)

As mentioned before, we adopt triplet constraint to optimize
the FTLN model. Therefore, we need to construct triplets which
consist of an anchor, a positive sample, and a negative sample.
Firstly, for each modality, we build positive pairs by randomly
147
selecting two instances with the same label. Specifically, we built
positive pairs

{
(vi, v

+

j )
}
i
, where vi is selected as an anchor while

v+j with same label is assigned as a positive match. Secondly, we
select negative samples having different semantic label to build
negative pair

{
(vi, v

−

k )
}
i. Combining positive pair and negative

air, we construct a set of triplets
{
(vi, v

+

j , v−k )
}
i
. Finally, we com-

ute the semantic invariance loss using the following expression
hat takes the triplets as input.

triplet =
∑
i,j,k

max(δ − d(vi, v
+

j )+ d(vi, v
−

k ), 0), (4)

here δ is margin value. In addition, we introduce the regulariza-
ion term to prevent the parameters from overfitting, as follows.

reg =
1
2

K∑
k=1

(W(k)
2
F

)
, (5)

where F denotes the Frobenius norm and W is the parameters of
DNNs. Therefore, the overall loss function of FTLN model is

LFTLN = Ltriplet + Lreg . (6)

3.3. Cross-modal graph construction

At first, we give a brief introduction to the graph model.
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Fig. 4. The detailed information of the cross-modal graph construction. The visualization figure is drawn by PCA, which projects the features from high dimension
o two dimension. Then, the nodes and edges are drawn in the graph. In the visualization, the neighbor number k is set as 10.
efinition 1 (Graph). A graph is denoted as G = (V , E), where
V = (v1, . . . , vn) is the vertexes and E = {ei,j}ni,j=1 is the edges.
ach edge ei,j is associated with a weight ωi,j, which indicates the

strength of the connection between two vertexes.

In our experiment, we only adopt binary value weight for the
connections, as follows.

ωi,j =

{
0, if ith vertex is not connected with jth vertex,
1, if ith vertex is connected with jth vertex. (7)

In our work, we construct the multi-modal graph by three
types of connections. The first type is semantic connections for
all training data. The second type is pairing connections for all
training data. The last type is the k-nearest neighbor connec-
tions for all instances. To be specific, the connections of any
instance hMP

i (MP is the modality of this instance) contains three
types. The semantic connection denotes the instance hMi

i is con-
nected with hMk

j of another modality if hMi
i and hMk

j belong to the
same category. Because the semantic connection crosses differ-
ent types of multimedia data, the semantic connection is also
called inter-modal connection, which indicates the category in-
formation of training instances. The local similarity connection
denotes the k-nearest similar neighbors calculated by cosine sim-
ilarity. The local similarity connections only exist in the same
modality, so it is also called intra-modal connections. In real-
ity, the multimedia data usually present in a pairing manner,
such as Wikipedia dataset, Pascal Sentence dataset, and NUS-
WIDE-10k dataset. Therefore, the constructed cross-modal graph
of these datasets has another connection, pairing connection.
Although the inter-modal semantic connections already contain
the pairing connections, we still introduce this type of connection
in constructing the cross-modal graph. The reason is that the
pair connections are crucial for aligning the image modality and
text modality on account of the pair connections can denote
the instances’ relationships in the same category. In the train-
ing process, the pairing connection and semantic connection are
optimized by the different objective functions.

Cosine distance considers the angle size of two feature vectors,
which is widely used in information retrieval. Therefore, our
experiment adopts cosine similarity to construct the k-nearest
similar local structure. For each vertex, k vertex indexes N i

bor is
assigned to indicate its neighborhoods if these vertexes in the
k-nearest similar neighborhood. In the cross-modal graph: an
instance of multimedia data is represented by a vertex; the intra-
modal connection is the k-nearest cosine similarity neighbor; the
inter-modal connection is the various modal data with seman-
tic information. Their connection status represents the weight
148
between any two vertexes. Besides, some datasets have pairing
connections if their multimedia data present in a pairing manner.
Therefore, the original data relationships are represented by the
constructed graph, as shown in Fig. 4. The left figure is the
concept map of the constructed cross-modal graph, while the
right figure is the visualization of a part of the cross-modal
graph on the Wikipedia dataset. In both concept graph and
visualization graph, the color of nodes denotes the category
label. The visualization of cross-modal graph shows that the
image modality and text modality are distributed in two different
subspaces before graph representation learning. Nonetheless, in
same modality, the instances are relatively clustered in different
colors. For intuitively observing the constructed graph, Fig. 5
shows several examples selected from the cross-modal graph on
Wikipedia dataset. Finally, graph representation learning aims to
map the graph vertexes into a low dimensional space, where a
low-dimensional vector denotes each vertex.

3.4. Graph Representation Learning Network

The framework of the proposed GRLN model is shown in Fig. 6.
As mentioned before, graph representation learning is a node-to-
vector embedding problem, instantiated with graph embedding.
Graph embedding is the same as the problem of the word-to-
vector model in the natural language process, which refers to
embedding a one-hot high-dimensional vector into a continuous
vector with a low dimension in aligned representation space.

The following content presents the definition of graph embed-
ding.

Definition 2 (Graph Embedding). Given a graph G = (V , E), a
graph embedding is a mapping f : vi → yi ∈ Rd,∀i ∈ [1, . . . , n]
such that d ≪ |n| and the function f preserves some proximity
measure defined on graph G.

An embedding maps each node to a low-dimensional feature
vector and tries to preserve the connection strengths between
vertices. Adopting global semantic supervision and graph local
context learning optimizes the proposed GRL, which can keep the
global semantic consistent and preserve the local graph struc-
ture, respectively. To be specific, for semantic connections, we
adopt global semantic supervised loss function as objective. For
local similarities connections, we adopt unsupervised graph local
context learning loss function as objective. We also adopt the
unsupervised graph local context learning loss function for these
datasets with pairing connections.
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Fig. 5. Several examples of the cross-modal graph.

Fig. 6. The detailed framework of the Graph Representation Learning Network.
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.4.1. Global semantic supervised loss
The category supervision is adopted to preserve the global

emantic information, where can bring instances together if they
re with the same semantic connections. Specifically, a fully-
onnected layer predicts the category in our model. Then, using
ross-entropy loss function optimizes the class distribution, as
ollows.

Ls =
1
N

N∑
k=1

yi log(ŷi), (8)

where ŷi is the predicted category. Instead of traditional softmax
function, a more advanced Additive Margin softmax function
(AMSoftmax) (Wang, Cheng, Liu, & Liu, 2018) is introduced to
formulate the probability. The AMSoftmax function is

ŷi =
es·(zi−m0)

es(zi−m0) +
∑C

j=1,i̸=j es·zi
(9)

where s is a scale factor and m0 is the margin size. Besides, zi is
the output of the fully connected layer, as follows.

zi = WTµi + b (10)

where µi the embedded vector of the ith instance. The supervised
loss only applies to the training data. To prevent overfitting, we
introduce L2-norm regularization term in category supervised
loss function, as follows.

Lreg =
1
2

K∑
k=1

(W(k)
2
F

)
, (11)

here F is Frobenius norm and W is the parameters of semantic
redict layer.
Eventually, the loss function of category supervision is

label = Ls + Lreg . (12)

.4.2. Unsupervised graph local context learning loss
For local structure of the graph, the connections indicate their

ffinity relationships. Optimizing loss function of graph context
earning is unsupervised learning, as follows.

LGraph = E(µi,µj,ωi,j)∼N i
bor

log(1+ e−ωi,j⟨µi,µj⟩), (13)

here N i
bor is the connected neighbors of the ith node. If the

ataset has pairing connections, N i
bor contains pairing instances.

According to Jenson inequality, the graph context learning loss
can be rewritten as
LGraph = E(µi,µj,ωi,j)∼N i

bor
log(1+ e−ωi,j⟨µi,µj⟩)

≥ log(1+ e
−E

(µi,µj,ωi,j)∼N
i
bor

(ωi,j⟨µi,µj⟩)
).

(14)

We adopt the widely used Laplacian Eigenmaps (LE) (Zhai et al.,
2014) as the graph optimization term. Laplacian Eigenmaps (LE)
aims to keep the embedding of two nodes close if the weightωi,jis
large. Therefore, the graph optimization function is defined as
follows.

LGraph = log(1+ e
−E

(µi,µj,ωi,j)∼N
i
bor

(ωi,j⟨µi,µj⟩)
),

= log(1+ e−LLE )
(15)

where,

LLE =
1
2

∑
i,j

ωi,j
f (oi; θ )− f (oj; θ )

2
2

=
1
2

∑
i,j

ωi,j
µi − uj

2
2

T

(16)
= tr(µ Lµ),
150
Here, L is the Laplacian of the graph G. The loss function LGraph
lays the function of preserving the local graph structure, which
ssures that the neighboring instances are also close in the em-
edded space. It should be noted that both the pairing connec-
ions and local graph connections are optimized by LGraph.

Finally, the overall loss function is

Lmix = α0Llabel + α1LGraph, (17)

here α0 and α1 are balancing factors. For optimizing the pro-
osed model, the goal is to minimize the loss function by gradient
escent. During the training process, the two loss functions are
ptimized alternately. It is important to note that both kinds of
oss functions are indispensable for achieving the desired perfor-
ance. Therefore, the unsupervised loss function and the super-
ised loss function have the same contribution in improving the
ross-modal retrieval performance.

.5. Optimization

For optimizing the proposed method, we need to optimize the
wo subnetworks, FTLN and GRLN. By minimizing the overall

loss LFTLN and Lmix as a function of parameter {θ0, . . . , θP , . . . ,
θT0

}
and

{
θ, θ̂

}
respectively, we can optimize the aforemen-

ioned model. Therefore, our goal is to find the parameters
θ0, . . . , θP , . . . , θT0

}
and

{
θ, θ̂

}
for getting the excellent perfor-

ance, as follows.

θ0, . . . , θP , . . . , θT0
)
= arg min

θ0,...,θP ,...,θT0

LFTLN , (18)

θ, θ̂

)
= argmin

θ,θ̂

Lmix. (19)

o be specific, the essential step is to calculate the derivative
f the two loss functions. Based on the two equations, we can
pdate the parameters as follows:

P ← θP − u0
∂LFTLN

∂θP
, (20)

θ ← θ − u1
∂Lmix

∂θ
, (21)

ˆ ← θ̂ − u1
∂Lmix

∂θ̂
(22)

here u0 and u1 denote the learning rates for the two subnet-
orks respectively. The parameter update of the two equations
an be realized by RMSprop optimization algorithm. Algorithm 1
hows the details of the optimization process. It should be noted
hat the proposed method takes all of the data into account dur-
ng the optimization, including the testing data. The testing data
re optimized by the unsupervised learning process. For newly
dded data, updating the cross-modal graph and fine-tuning the
ptimized GRLN model can obtain the aligned representation of
hese data.

. Experimental results and evaluation

In this section, we do extensive experiments and in-depth
nalyses on several widely-used datasets to objectively and fully
erify the effectiveness of the proposed GRL in cross-modal re-
rieval task.

.1. Datasets and features

The cross-modal retrieval experiments are conducted on the
idely used datasets, namely Wikipedia dataset (Rasiwasia et al.,
010), NUS-WIDE-10k dataset (Chua et al., 2009), Pascal Sen-
ences dataset (Rashtchian, Young, Hodosh, & Hockenmaier, 2010)
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PKU XMedia dataset (Peng et al., 2017), PKU XMediaNet dataset
(Peng, Qi, & Yuan, 2018), and MSCOCO dataset (Lin et al., 2014)
respectively. It should be noted that both PKU XMedia dataset
and PKU XMediaNet dataset consist of five types of media data.
For the five datasets, the image feature is 4096-dimensional VGG-
19 feature (Simonyan & Zisserman, 2014) and the text feature
is 3000-dimensional BOW feature, if we do not explain spe-
cially. The detailed statistic information of the evaluated datasets
are shown in Table 1. The next content presents the detailed
information about these five datasets.

Wikipedia dataset (Rasiwasia et al., 2010) is constructed from
he ‘‘featured article’’ of Wikipedia, which consists of 10 high-
evel semantic categories such as art and history. This dataset
ontains 2866 image-text pairs and each image-text pair only
elongs to one class. The experiment details of the Wikipedia
ataset strictly follow the partition shown in McGurk and Mac-
onald (1976). We randomly choose 2173 image-text pairs as
raining set, 231 pairs of instances as validating set, and 462
mage-text pairs as testing set.

NUS-WIDE-10k dataset (Chua et al., 2009) is a part of a well-
nown large-scale dataset, named NUS-WIDE dataset, which con-
ains 269,648 images and several corresponding semantic tags
or each image. Following Huang et al. (2017), we choose the 10
argest categories of images with a unique label to conduct the
xperiments. In total 10,000 image-text pairs, we choose 8000
airs of instances for training and 1000 pairs of instances for
esting. The text feature is 1000-dimensional BOW feature.

Pascal Sentence dataset (Rashtchian et al., 2010) contains
000 images of 20 categories. Each image is described by five
entences, which is viewed as a document. Our experiment splits
he dataset into three sub-datasets, 800 pairs for training, 100
airs for validating and 100 pairs for testing.
PKU XMedia dataset (Peng et al., 2017) is constructed for

ulti-modal retrieval, which contains five modalities, image,
ext, audio, video, and 3D model. This dataset contains 4000
mages, 4000 texts, 500 videos, 1000 audios, and 500 3D models.

n our experiment, the dataset partition follows the previous r
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work (Huang et al., 2020). The adopted features are as fol-
lows: video feature, 4096-dimensional CNN feature; Audio, 29-
dimensional MFCC (Han, Chan, Choy, & Pun, 2006); 3D model,
4700-dimensional LightField feature (Chen, Tian, Shen, & Ouhy-
oung, 2003).

PKU XMediaNet dataset (Peng, Qi, & Yuan, 2018) is a large-
scale dataset of texts, images, videos, audios, and 3D models for
cross-modal retrieval, which consists of five types of media data
with more than 100,000 instances. This dataset consists of 40,000
texts, 40,000, 10,000 videos, 10,000 audios, and 2000 3D models.
The total number of all multimedia instances exceeds 100,000.
The data partition is shown in Table 1. The video feature is ex-
tracted by C3D model (Tran, Bourdev, Fergus, Torresani, & Paluri,
2015), which is pre-trained on Sports1M (Karpathy et al., 2014).
The audio feature is extracted by jAudio (McKay, Fujinaga, &
Depalle, 2005) using its default setting. The same to PKU XMedia
dataset, the 3D model is represented by 4700-dimensional vector
of a LightField descriptor set.

MSCOCO dataset (Lin et al., 2014) is a large-scale dataset for
various tasks, such as object recognition, image classification,
and cross-modal retrieval. The dataset contains about 120,000
instances of image-text pairs. In this dataset, five sentences de-
scribing one image. In our experiment, the five sentences are con-
sidered as a document. It should be noted that each image-text
pair of MSCOCO dataset is associated with multiple class labels.
Following previous works (Peng, Huang, & Qi, 2016), we adopt
66,226 instances for training, 16,557 for validating, and 16,557 for
testing. The 4096-dimensional image feature and 2000-
dimensional text feature are extracted by the VGG19 model and
BoW model, respectively.

4.2. Evaluation metric and implementation details

4.2.1. Evaluation metric
We adopt the widely used metric in cross-modal retrieval,

Mean Average Precision (MAP), to evaluate the performance of
the proposed method. Mean Average Precision (MAP) score, the
mean value of ground-truth matchings in the retrieved results
for all queries, is a very popular evaluation metric in retrieval
tasks. For every query, the Average Precision is computed as the
following formula.

AP =
1
R

N∑
j=1

Rj

j
× relj, (23)

where relj is denoted by 0 or 1, and Rj is the sequence number
of the relevant instances among the top-j retrieved results. Then,
we obtain the eventual MAP by calculating the mean value of all
the average precision values, as follows.

MAP =
1
N

N∑
j=1

APj, (24)

In our experiments, the mean average precision is calculated
by all the retrieved results not top-50 results (Wang et al., 2017)
if we do not explain specially. Besides, it should be noted that the
MAP scores are presented in percentage type in our paper.

Besides, the top returned instances are usually more important
in evaluation of information retrieval. As is common in informa-
tion retrieval, we also measure the performance by recall at K
(R@K) defined as the fraction of queries for which the correct item
is retrieved in the closest K points to the query. The calculation
formula is as follows,

R@k =
1
N

N∑
j=1

Rej, (25)

here Rej is 1 if the correct instance is returned in the top-k
esults, otherwise it is 0.
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he detailed statistic information of the evaluated datasets.
Dataset Category Modality number Image feature Text feature Train Valid Test Total

Wikipedia 10 2 4096d VGG19 3000d BoW 2,173 231 462 2,635
NUS-WIDE-10k 10 2 4096d VGG19 1000d BoW 8,000 1,000 1,000 10,000
Pascal Sentence 20 2 4096d VGG19 3000d BoW 800 100 100 1,000
PKU XMedia 20 5 4096d VGG19 3000d BoW 9,600 1,200 1,200 12,000
PKU XMediaNet 200 5 4096d VGG19 3000d BoW 81,600 10,200 10,200 102,000
MSCOCO 80 2 4096d VGG19 2000d BoW 66,226 16,557 16,557 99,340
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4.2.2. Implementation details
We implement the proposed method on a desktop computer

ith an Intel Core i7-6700K CPU, NVIDIA GeForce GTX1080ti
or acceleration and 64 GB of memory. In our experiment, the
etails of subnetworks are as follows: For the FTLN model, it
onsists of two fully connected layers respectively and is op-
imized by triplet loss. For the GRLN model, every node index
f the cross-modal graph is embedded into a 512-dimensional
ector, which aims to learn the aligned feature. Besides, we adopt
fully connected layer with AMSoftmax activation function for

abel prediction in the supervised learning. The weight param-
ters of the embedding layer are shared in the global semantic
bjective function optimization and graph local structure opti-
ization. The proposed method is implemented on Keras and
ptimized by RMSprop (Tieleman & Hinton, 2012) optimizer with
ackpropagation. The learning rate of RMSprop optimizer is set
s 0.001 for both two losses. The trade-off hyper-parameters of
arious losses are set as 5 and 2, respectively. The value of m0
nd s are 0.2 and 15 respectively. All the hyper-parameters are
etermined by experiments. For different datasets, the values of
yper-parameters have variations.

.3. Experimental results and evaluations

Two types of cross-modal retrieval tasks are conducted for
bjectively evaluating the proposed method, as follows.

• Bi-modal cross-modal retrieval. We choose the most
widely used image modality and text modality to conduct
the experiment.
• Multi-modal cross-modal retrieval. The experiments are

conducted on all five modalities (i.e., image, text, audio,
video, and 3D model) of the PKU XMedia dataset and PKU
XMediaNet dataset.
For each cross-modal retrieval, there are two kinds of evalu-
ating experiments. The first is bi-directional retrieval, which
performs retrieval between two modalities, such as image
retrieve text (image → text), and text retrieve image (text
→ image). The second is all-modal retrieval, which performs
retrieval within all modalities, such as image retrieve all
modalities (image → all), and text retrieve all modalities
(text→ all).
The compared methods contain: traditional cross-modal
retrieval methods, such as CCA (Hotelling, 1936), KCCA
(Hardoon et al., 2004), CCA-3V (Gong et al., 2014), CFA (Li
et al., 2003), JFSSL (Wang et al., 2015), SCM (Pereira et al.,
2013), JRL (Zhai et al., 2014), LGCFL (Kang et al., 2015), and
DNN-based approaches, such as DCCA (Andrew et al., 2010),
Bimodal AE (Ngiam et al., 2011), Multimodal DBN (Srivas-
tava & Salakhutdinov, 2012), Corr-AE (Feng, Wang, & Li),
Deep-SM (Wei et al., 2017), CMDN (Peng, Huang, & Qi,
2016), CM-GANs (Peng & Qi, 2019), MSCM (Peng, Qi, & Yuan,
2018), ACMR (Wang et al., 2017), MHTN (Huang et al., 2020),
CMST (Wen, Han, Yin, & Liu, 2019), CCL (Peng, Qi, Huang,
& Yuan, 2018), TPCKT (Huang & Peng, 2019). Among DNN-
based approaches, MHTN (Huang et al., 2020), ACMR (Wang
et al., 2017), CM-GANs (Peng & Qi, 2019), CMST (Wen et al.,
152
2019) and TPCKT (Huang & Peng, 2019) are adversarial
learning based methods. Next, we briefly introduce some
approaches, which are not included in the previous content.

Bimodal AE (Tran et al., 2015) adopts deep networks to learn
eatures of different modalities and then learns a shared repre-
entation between different modalities.
Corr-AE (Feng et al.) introduces a correspondence autoen-

oder to realize cross-modal retrieval. It models the correlation
nd reconstruction learning error with two different multi-modal
utoencoders.
CMST (Wen et al., 2019) first employs an unsupervised strat-

gy to learn the endogenous semantic relationships and then
ransfers the learned relationships to the common representation
ubspace.
CCL (Peng, Qi, Huang, & Yuan, 2018) realizes cross-modal

orrelation learning with multi-grained fusion by a hierarchical
etwork, which can deeply explore the intra-modality semantic
upervision and inter-modality pair-wise similarity constraints.
TPCKT (Huang & Peng, 2019) proposes the approach of two-

evel progressive cross-media knowledge transfer, which trans-
ers knowledge from large-scale cross-media data, to boost the
etrieval accuracy on cross-media data of another domain.

MSCM (Xu et al., 2019) attempts to construct the independent
emantic space for each modality instead of learning the common
epresentation of different modalities, which can generate the
imilarity of different instances by an end-to-end framework.

.3.1. Bi-modal cross-modal retrieval
In this subsection, we compare the proposed GRL with many

tate-of-the-art methods by the cross-modal retrieval accuracy to
valuate the performance of the proposed GRL approach. For a
air comparison, all the compared methods adopt the same MAP
etric and the same extracted features. The experimental results
f MAP(@all) are shown in Tables 2 and 4, which show the results
f bi-directional retrieval and all-modal retrieval, respectively.
esides, we also calculate the MAP(@50), which is widely adopted
y many methods such as ACMR and CMST, to show the re-
rieval performance in the top-50 retrieved results. Table 3 shows
he MAP(@50) scores of various approaches. These experimental
esults show that our proposed GRL method achieves the best
etrieval accuracy compared with all the state-of-the-art models
n all of the evaluated datasets. Besides, our proposed GRL makes
ignificant improvements on all the datasets. For example, on PKU
Media dataset, the MAP(@all) score has been improved from
4.8 to 92.0. On the PKU XMediaNet dataset, the MAP(@all) has
een improved from 55.9 to 61.8. On Pascal Sentence dataset,
he MAP(@50) score has been improved from 60.4 to 72.7. On
ll-modal retrieval, Table 4 shows the same results that our
roposed method outperforms the state-of-the-art methods on
he evaluated datasets.

Among the compared methods, we can observe that most
NNs based methods, such as MCSM, CCL, CM-GAN, TPCKT, can
btain better performance than traditional approaches. These
esults also verify the great fitting capacity of DNNs, which con-
ributes to this superior performance. Furthermore, among these
NNs based methods, the hybrid strategy that combines DNNs
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dataset, and PKU XMediaNet dataset, calculated on

HTN CCL CM-GANs MCSM TPCKT GRL

1.4 50.5 52.1 51.6 54.8 54.7
4.4 45.7 46.6 45.8 48.9 50.0
7.9 48.1 49.4 48.7 51.9 52.3

2.0 48.1 – – 57.5 57.9
3.4 52.0 – – 58.9 59.4
2.7 50.1 – – 58.2 58.7

9.6 57.6 60.3 59.8 58.6 71.6
0.0 56.1 60.4 59.8 59.5 70.9
9.8 56.9 60.4 59.8 59.1 71.3

5.3 – – – – 91.3
4.3 – – – – 92.7
4.8 – – – – 92.0

53.7 56.7 54.0 – 61.2
52.8 55.1 55.0 – 62.3
53.3 55.9 54.5 – 61.8
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Table 2
The MAP (@all) comparison of the cross-modal retrieval performance on Wikipedia dataset, NUS-WIDE-10k Dataset, Pascal Sentence dataset, PKU XMedia
all returned results.
Dataset Task CCA CFA DCCA Bimodal AE Multimodal DBN Corr-AE JRL LGCFL CMDN Deep-SM ACMR M

Wikipedia
Image → Text 38.4 39.6 40.9 30.1 20.4 37.3 40.8 41.6 40.9 45.8 43.9 5
Text → Image 36.7 37.3 35.5 26.7 14.5 35.7 36.0 36.0 36.4 34.5 36.1 4
Average 36.5 38.4 38.2 28.4 17.5 36.5 38.8 38.8 38.7 40.2 40.0 4

NUS-WIDE-10k
Image → Text 15.9 29.9 38.4 23.4 17.8 30.6 41.0 40.8 41.0 38.9 44.5 5
Text → Image 18.9 30.1 38.2 37.6 14.4 34.0 44.4 37.4 45.0 49.6 47.3 5
Average 17.4 30.0 38.3 30.5 16.1 32.3 42.7 39.1 43.0 44.3 45.9 5

Pascal Sentence
Image → Text 11.0 34.1 31.2 40.4 43.8 41.1 41.6 38.1 45.8 44.0 43.4 4
Text → Image 11.6 30.8 31.1 44.7 36.3 47.5 37.7 43.5 44.4 41.4 41.6 5
Average 11.3 32.5 31.1 42.6 40.1 44.3 39.7 40.8 45.1 42.7 42.5 4

PKU XMedia
Image → Text 25.7 29.2 47.2 59.8 9.3 45.0 77.0 74.4 79.4 82.2 70.4 8
Text → Image 34.1 28.3 46.6 64.2 12.0 43.7 80.0 80.4 80.5 80.7 71.0 8
Average 20.0 28.6 41.0 26.7 12.3 24.2 54.8 38.7 36.3 65.7 55.5 8

PKU XMediaNet
Image → Text 21.2 25.2 42.5 – – 46.9 48.8 44.1 48.5 39.9 – –
Text → Image 21.7 40.0 43.3 – – 50.7 40.5 50.9 51.6 34.2 – –
Average 21.5 32.6 42.9 – – 48.8 44.7 47.5 50.1 37.1 – –
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nd adversarial learning can achieve better retrieval accuracy,
uch as CM-GAN, CMST, and TPCKT. ACMR is the first attempt to
ntroduce adversarial learning into cross-modal retrieval. Among
he adversarial learning-based methods, TPCKT and CM-GANs ob-
ain the second and third-best performance. CM-GANs introduces
ot only the cross-modal generative adversarial networks but
lso a new cross-modal adversarial mechanism in cross-modal re-
rieval model. What is more, both the CM-GANs and TPCKT adopt
he pre-trained text CNN model, which is pre-trained on billions
f words in Google News, to extract the deep text feature instead
f adopting the shallow BoW feature. Although the proposed
ethod adopts shallow BoW feature for text, the experimental

esults show that the GRL has several advantages over CM-GANs
nd TPCKT. It should also be noted that, among these tradi-
ional methods, JRL and LGCFL obtain competitive performance
y comparing with DNNs based methods.
The MSCOCO is a standard dataset for cross-modal retrieval,

idely used in image-text matching task. We do experiments on
he MSCOCO dataset to evaluate the performance of the proposed
RL. Several recently proposed methods, such as CCA (Klein,
ev, Sadeh, & Wolf), DVSA (Karpathy & Fei-Fei), m-RNN (Mao
t al., 2014), m-CNN (Ma, Lu, Shang, & Li), DSPE (Wang, Li, &
azebnik), and ACMR (Wang et al., 2017), are included to compare
ith the proposed method. For a fair evaluation of the MSCOCO
ataset, we follow the experimental protocol and quote the MAP
esults obtained by ACMR (Wang et al., 2017). The MAP scores
f the GRL and the compared methods are shown in Table 5.
he results show that the proposed method obtains the best
AP score, which is 93.5 with FTLN and 92.3 without FTLN. On

he MSCOCO dataset, the proposed method obtains significant
mprovement (from 90.5 to 93.5) compared with the perfor-
ance of the second-best method, ACMR. The reason is graph

epresentation learning increase the learning ability of shared
epresentation learning.

For information retrieval, the top returned instances are usu-
lly more essential to obtain highly related items. Therefore, the
recision of the top returned instances is included to evaluate
he proposed method’s effectiveness. The quantitative evaluation
esults of R@k are shown in Table 6. Table 6 shows that the
roposed method achieves excellent performance on precision at
he top-k returned instances. Besides, we can observe that the
AP score metric is highly related to the R@k evaluation metric.
pecifically, the proposed GRL obtains higher R@k precision value
n Pascal Sentence dataset and PKU Xmedia dataset, which are
onsistent with the results of the MAP score evaluation metric.
For visual comparison, we draw the precision–recall curves

f cross-modal retrieval tasks on the Wikipedia dataset, Pascal
entence dataset, NUS-WIDE-10k dataset, and PKU XMediaNet
ataset, as shown in Figs. 7, 8, 9, and 10. The visual comparison
hows that the proposed GRL has a noticeable improvement com-
ared with state-of-the-art methods. Besides, for better observing
ffectiveness of the proposed method, we draw the visualized
eature distribution by t-SNE visualization (Maaten & Hinton,
008) for the Wikipedia dataset, Pascal Sentence dataset, NUS-
IDE-10k dataset, and PKU XMedia dataset, as shown in Fig. 11.
he numbers in the legend indicate the category labels in each
ataset. The visualization of PKU XMediaNet dataset is drawn in
ig. 12, which contains up to 200 classes. The t-SNE visualizations
f the original feature and embedded feature indicate that the
riginal feature distribution is chaotic, while the embedded fea-
ure distribution is ordered. The embedded feature distribution
resents many clusters, which denote different categories of both
mage and text.

To intuitively observe the cross-modal retrieval results, we
hoose some retrieval examples, as shown in Fig. 13. In addition

o successful cases, Fig. 8 also shows some failure examples. For
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instance, the retrieved texts of a query image of the ‘History’
category are almost ‘warfare’ texts. The reason is ‘history’ and
‘warfare’ are indistinguishable in high-level semantic represen-
tation, even for our human beings. Therefore, the algorithm also
makes similar mistakes when it faces to this challenging issue.

4.3.2. Multi-modal cross-modal retrieval
We do experiments on the PKU XMedia dataset and PKU

XMediaNet dataset to verify the effectiveness of the proposed GRL
on multi-modal cross-modal retrieval tasks. As mentioned before,
both PKU XMedia dataset and PKU XMediaNet dataset have five
modalities, image, text, audio, video, and 3D model, respectively.
The experiment results of multi-modal bi-directional retrieval
are shown in Table 7. Compared with bi-modal retrieval, multi-
modal retrieval is more difficult because of the various feature
types. Table 7 indicates that the proposed method also can obtain
excellent performance on multi-modal retrieval tasks, especially
in the PKU XMedia dataset. However, the experiment results on
PKU XMediaNet dataset show that cross-modal retrieval is more
complicated than the PKU XMedia dataset. The reason is that
the PKU XMedia dataset only contains 20 categories, while the
PKU XMediaNet dataset contains 200 categories. The experiment
results show that the audio modality related MAP scores are
very low. As mentioned before, the audios are represented by
78-dimensional shallow feature extracted by the jAudio model.
However, the category of audio modality is up to 200, which
leads to vast differences between the original feature dimension
and the target label dimension. Therefore, the audio modality
related retrieval tasks have poor results. The proposed method
can achieve excellent performance on the other modalities, such
as image, text, video, and 3D model. In future work, improving the
retrieval results on PKU XMediaNet dataset focuses on enhancing
the feature quality.

4.3.3. Experimental analysis
In this subsection, we make in-depth analyses about the ex-

perimental results of our proposed GRL. Besides, we make more
experiments to analyze the advantages of the proposed method
and the contributions of each part of the proposed model.

To analyze each category’s specific retrieval performance, we
draw these histograms to show the MAP score of each category,
as shown in Fig. 14. The category information is extremely high-
level semantic and abstract on the Wikipedia dataset, such as
‘art’ and ‘history’, which are also difficult for our human beings
to distinguish. The experiment results show that some categories
obtain relatively low MAP scores, such as ‘history’, ‘art’, ‘royalty’,
and ‘literature’, which are consistent with our intuition. On the
NUS-WIDE-10k dataset, the categories ‘sky’ and ‘clouds’ obtain
the lowest MAP score. Compared with other categories, the dif-
ferences between these two categories are relatively semantic
indistinctness. On the Pascal Sentence dataset, most categories
can obtain relatively high MAP scores. However, a few cate-
gories have low performance, such as ‘cow’ and ‘sheep’. Therefore,
in future work, we need to extract more distinguishing fea-
tures to improve the cross-modal retrieval, especially for similar
categories.

We also show the plots of the two sub-loss functions and their
total sum loss values of the GRLN model, as shown in Fig. 15. We
can observe that the value of category supervision loss reduces
quickly with the growth of training iteration. On the Wikipedia
dataset, the loss Llabel converges about 200 iterations, while the
loss LGraph converges about 600 iterations. In our experiment, we
find that the retrieval accuracy on the validation dataset obtains
the highest value at about 300 iterations, where the plots of graph
loss generally become stable.

In the proposed GRL, the extracted features are critical to

the cross-media graph construction. To verify the effectiveness
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able 3
he MAP (@50) comparison of the cross-modal retrieval performance on Wikipedia dataset, NUS-WIDE-10k dataset, and Pascal Sentence dataset, calculated on the
op-50 returned results.
Dataset Task CCA Multimodal DBN Bimodal-AE Corr-AE JRL CCA-3V JFSSL CMDN ACMR CMST CCL CM-GANs GRL

Wikipedia
Image → Text 26.7 20.4 31.4 40.2 45.3 43.7 42.8 48.8 61.9 63.2 49.0 50.0 53.3
Tex → Image 22.2 18.3 29.0 39.5 40.0 38.3 39.6 42.7 48.9 50.5 61.3 62.1 65.0
Average 24.5 19.4 30.2 39.8 42.6 41.0 41.2 45.8 55.4 56.9 55.1 56.1 59.2

NUS-WIDE-10k
Image → Text 18.9 20.1 32.7 36.6 42.6 40.8 38.9 49.2 54.4 62.1 – – 67.9
Text → Image 18.8 25.9 36.9 41.7 37.6 37.4 49.6 51.5 53.8 58.6 – – 65.8
Average 18.9 23.0 34.8 39.2 40.1 39.1 44.3 50.4 54.1 60.4 – – 66.9

Pascal Sentence
Image → Text 24.7 – – 48.9 50.4 31.6 – 53.4 53.5 62.1 59.2 61.2 73.2
Text → Image 24.8 – – 44.4 48.9 27.0 – 53.4 54.3 58.6 57.6 61.0 72.3
Average 24.8 – – 46.7 49.6 29.3 – 53.4 53.9 60.4 57.9 61.1 72.7
Table 4
The MAP (@all) comparison of the cross-modal retrieval performance on Wikipedia dataset, Pascal Sentence dataset, and PKU XMediaNet dataset, calculated on the
all returned results.
Dataset Task CCA CFA KCCA DCCA JRL LGCFL Deep-SM CMDN ACMR CCL CM-GANs GRL

Wikipedia
Image → All 26.8 27.9 35.4 37.1 40.4 39.2 39.1 40.7 39.9 42.2 43.4 45.3
Tex → All 37.0 34.1 51.8 56.0 59.5 59.8 59.7 61.1 59.5 65.2 66.1 68.5
Average 31.9 31.0 43.6 46.6 50.0 49.5 49.4 50.9 49.7 53.7 54.8 56.9

Pascal Sentence
Image → All 23.8 47.0 34.6 55.6 56.1 38.5 55.5 49.6 56.5 57.5 58.4 69.2
Text → All 30.1 49.7 42.9 65.3 63.1 42.0 65.3 62.7 62.5 63.2 69.8 70.6
Average 27.0 48.4 38.8 60.5 59.6 40.3 60.5 56.2 59.5 60.4 64.1 69.9

PKU XMediaNet
Image → All 25.4 31.8 29.9 43.3 50.8 31.4 35.1 50.4 57.0 55.2 58.1 68.1
Text → All 25.2 20.7 18.6 47.5 50.5 54.4 33.8 56.3 54.8 57.8 59.0 59.0
Average 25.3 26.3 24.3 45.4 50.7 42.9 34.5 53.4 55.9 56.5 58.6 63.6
Fig. 7. Precision recall curves of cross-modal retrieval on Wikipedia dataset.
Fig. 8. Precision recall curves of cross-modal retrieval on Pascal Sentence dataset.
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Fig. 9. Precision recall curves of cross-modal retrieval on NUS-WIDE-10k dataset.

Fig. 10. Precision recall curves of cross-modal retrieval on PKU XMediaNet dataset.

Fig. 11. The feature visualization by using t-SNE on Wikipedia dataset, Pascal Sentence dataset, NUS-WIDE-10k dataset, and PKU XMedia dataset.
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Fig. 12. The feature visualization by t-SNE on PKU XMediaNet dataset.
Fig. 13. Some cross-modal retrieval examples on Wikipedia dataset. The instances in green border are successful cases, while the instances in red border are failures..
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
able 5
he MAP comparison of the cross-modal retrieval performance on MSCOCO
ataset.

Methods Image-text retrival

Image → text Text → image Average

CCA (FV HGLMM) 79.1 76.5 77.8
CCA (FV GMM+HGLM) 80.9 76.6 78.8
DVSA 80.5 74.8 77.7
m-RNN 83.5 77.0 80.3
m-CNN 76.7 81.3 82.1
DSPE 89.2 86.9 88.1
ACMR 93.2 87.1 90.2
GRL (without FTLN) 94.2 90.0 92.1
GRL (Full) 95.7 91.2 93.5
157
of the feature transfer learning process, we set up comparing
experiments of original features and transferred features by dif-
ferent models. The MAP scores of this ablation study, as shown
in Table 8. We can observe that the GRL method’s performances
with the transferred features are better than with the original
extracted features. For a large dataset, the FTLN model plays a
more critical function in the cross-modal retrieval. For example,
on the PKU XMediaNet dataset, the GRL with the original feature
can only achieve the MAP score of 53.5, while the GRL with
the features in the latent space can obtain significant progress,
which improves the MAP score from 53.5 to 61.8. The experi-
mental results of various FTLN model are shown in Table 9. The
comparisons of various models show that a deeper network is
not certain to obtain better performance. For example, the MAP
scores of three fully-connected layers are lower than those of one
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Fig. 14. MAP scores of different categories on Wikipedia dataset, NUS-WIDE-10k dataset, and Pascal Sentence dataset.
Fig. 15. The plots of different losses on Wikipedia dataset, NUS-WIDE-10k dataset, Pascal Sentence dataset, and PKU XMedia dataset.
W
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r two fully-connected layers. The reason is that deep networks
ay lead to overfitting, which will decrease the performance of

he testing dataset. We can conclude that a simple model can
btain remarkable performance for the features extracted from
he pre-trained VGG19 and BoW models.

Furthermore, because the simple k-nearest neighbor algorithm
s adopted to construct the cross-modal graph, we need to study
he influence of the value of k and then find the most proper
k for different datasets. The experimental results with various
values of k are shown in Table 10. We can observe from the table
that it cannot obtain the optimal cross-modal retrieval accuracy
if the value of k is too large or too small. Besides, we plot the
MAP curves of different k, as shown in Fig. 16. For the Wikipedia
ataset, we can conclude that the most proper value of variable
is about 15. Because the size of the Pascal Sentence dataset
158
is relatively small, the most proper value of k is about 5. For
the other three datasets, NUS-WIDE-10k dataset, PKU XMedia
dataset, and PKU XMediaNet dataset, the most proper values of
k are 20, 50, and 50, respectively. In general, for a larger scale
dataset, the value of k should be bigger.

During the optimization of GRLN, the training balance of the
supervised loss and unsupervised loss is vital for the performance
of the proposed approach. We do more parameter analysis exper-
iments to explore the impacts of these parameters α0 and α1 on

ikipedia dataset. All of the two parameters vary from 0 to 9 (0,
, 3, 5, 7, 9). The experimental results of parameter sensitivity
nalysis are shown in Fig. 17. The first sub-figure shows that
he proposed method can achieve relatively better performance
nly with the unsupervised loss. We can observe from the second
ub-figure that the performance is relatively robust when varies
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Table 6
Quantitative evaluation results of the cross-modal retrieval on Wikipedia, NUS-WIDE-10k, Pascal Sentence, PKU
XMedia, PKU XMediaNet, and MSCOCO dataset in terms of Recall@K (R@K).

Dataset Image-text retrival Text-image retrieval

R@1 R@5 R@10 R@1 R@5 R@10 R@sum

Wikipedia 48.9 60.8 62.9 73.4 94.1 97.0 437.2
NUS-WIDE-10k 61.6 79.6 84.1 65.7 75.9 79.1 446.0
Pascal Sentence 97.0 100.0 100.0 94.0 100.0 100.0 591.0
PKU XMedia 91.2 92.6 95.4 95.4 96.0 96.0 564.0
PKU XMediaNet 76.7 81.3 82.1 68.7 71.7 72.3 452.9

MSCOCO 90.0 95.0 96.1 95.4 98.6 99.1 574.3
Table 7
The MAP (@all) scores of the multi-modal cross-modal retrieval performance
(bi-directional retrieval) on PKU XMedia dataset and PKU XMedianet Ddataset.

Dataset PKU XMedia PKU XMediaNet

Image → Text 89.6 56.5
Image → Video 55.5 32.7
Image → Audio 48.9 19.1
Image → 3D 72.2 29.7
Text → Image 91.8 56.9
Text → Video 59.8 27.8
Text → Audio 51.2 16.8
Text ->3D 75.6 26.5
Video → Image 55.6 34.4

Task Video → Text 60.0 27.9
Video → Audio 37.0 14.4
Video → 3D 54.9 22.5
Audio → Image 49.4 20.1
Audio → Text 53.3 16.5
Audio → Video 37.6 14.7
Audio → 3D 47.6 16.3
3D → Image 64.5 29.8
3D → Text 68.5 24.4
3D → Video 46.2 19.8
3D → Audio 37.1 15.2
Average 57.8 26.1

the value of α1. In addition, the MAP scores are higher than the
esults of the control groups. The third sub-figure indicates that
he model cannot be optimized without the unsupervised loss
Graph. The last sub-figure shows that the cross-modal retrieval
erformance decreases if enlarge the weight of unsupervised loss
unction (from 1 to 9). Comparing the first and the third sub-
igures, we can draw a conclusion that the unsupervised loss
an optimize the model independently while the supervised loss
annot. In general, the large weight of the supervised loss and
mall weight of the unsupervised have better robust and higher
valuation scores.
The experimental results of cross-modal retrieval indicate that

he proposed GRL outperforms the state-of-the-art approaches.
rom the experimental results and the above analyses, the rea-
ons can be concluded as the following: (1) The GRL bypasses
he heterogeneity gap by reconstructing the original feature and
heir relationships into a cross-modal graph, which is the crucial
art of the proposed method. Then, the GRL adopts a node-

o-vector strategy to embedding the vertex on the graph into
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Fig. 16. The MAP scores of different number of neighbors on Wikipedia dataset,
NUS-WIDE-10k dataset, Pascal Sentence dataset, and PKU XMedia dataset.

a low-dimensional vector. Compared with traditional common
space learning methods, the GRL processes the relationships of
original data instead of processing the extremely complex original
features. Precisely because of the complexity of original features,
there is a huge heterogeneity gap among different modalities,
which improves the difficulty of cross-modal retrieval. Therefore,
embedding the vertexes into a shared space is simpler than
mapping the original data into an aligned representation space.
(2) Before constructing the cross-modal graph, we first project
the originally extracted features by five FTLN models, which
consists of fully connected networks respectively. This step aims
at transferring the original features into a latent space, where
the use of cosine similarity to construct the cross-modal graph is
reasonable. Therefore, the constructed graph can more reasonably
represent the original data and their relationships. (3) During the
graph optimization process, we adopt a distance minimization
strategy if the two instances are in the k-nearest neighbors to
learn the graph context. After sufficient game between different
neighbors, the unlabeled graph vertexes will be embedded into
a certain label space. The experimental results indicate that the
value of variable k influences retrieval accuracy. In general, the
value of k is determined by the size of the dataset.
Fig. 17. A sensitivity analysis of the balancing parameters.
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Table 8
MAP (@all) comparisons of ablation study (without FTLN and full model) for cross-modal retrieval (bi-directional retrieval and
all-modal retrieval) on the five datasets.
Dataset Bidirectional retrieval Without FTLN Full All-modal retrieval Without FTLN Full

Wikipedia
Image → Text 53.2 54.7 Image → all 45.0 45.3
Text → Image 48.2 50.0 Text → all 64.3 68.5
Average 50.7 52.3 Average 54.7 56.9

NUS-WIDE-10k
Image → Text 54.4 57.9 Image → all 58.2 59.4
Text → Image 55.2 59.4 Text → all 52.9 57.3
Average 54.8 58.7 Average 55.6 58.4

Pascal Sentence
Image → Text 66.4 71.6 Image → all 66.9 69.2
Text → Image 66.4 70.9 Text → all 68.1 70.6
Average 66.4 71.3 Average 67.5 69.9

PKU XMedia
Image → Text 88.4 91.3 Image → all 87.4 89.1
Text → Image 88.7 92.7 Text → all 89.9 94.4
Average 88.5 92.0 Average 88.7 91.7

PKU XMediaNet
Image → Text 53.4 61.2 Image → all 63.1 68.1
Text → Image 53.6 62.3 Text → all 48.6 59.0
Average 53.5 61.8 Average 55.9 63.6
Table 9
MAP (@all) comparisons of various type of FTLN models for cross-modal retrieval (bi-directional retrieval) on the five datasets.
Dataset Bidirectional retrieval Without FTLN Fine-tune VGG19 1 FC layer 2 FC layers 3 FC layers

Wikipedia
Image → Text 53.2 53.7 53.5 54.7 54.3
Text → Image 48.2 48.2 48.6 50.0 48.5
Average 50.7 50.9 51.0 52.3 51.4

NUS-WIDE-10k
Image → Text 54.4 57.6 57.2 57.9 55.8
Text → Image 55.2 58.0 58.5 59.4 58.4
Average 54.8 57.8 57.9 58.7 57.0

Pascal Sentence
Image → Text 66.4 67.6 71.1 71.6 68.2
Text → Image 66.4 67.4 69.8 70.9 67.7
Average 66.4 67.5 70.5 71.3 68.0

PKU XMedia
Image → Text 88.4 – 88.9 91.3 86.8
Text → Image 88.7 – 90.4 92.7 87.3
Average 88.5 – 89.7 92.0 87.1

PKU XMediaNet
Image → Text 53.4 – 61.2 60.8 57.6
Text → Image 53.6 – 62.3 60.4 58.4
Average 53.5 – 61.8 60.6 58.0
Table 10
The MAP (@all) comparisons of different number of k on the five datasets.

Dataset Bidirectional retrieval Number of neighbors

3 5 10 15 20 30 40 50

Wikipedia
Image → Text 48.7 52.5 53.1 54.3 53.3 53.6 53.3 52.5
Text → Image 42.4 45.7 47.4 48.8 48.4 46.9 47.8 47.5
Average 45.5 48.9 50.2 52.3 50.8 50.2 50.5 50.0

NUS-WIDE-10k
Image → Text 49.6 54.3 56.3 57.1 57.9 57.0 57.1 56.9
Text → Image 51.2 55.2 57.5 58.4 59.4 58.4 58.0 57.9
Average 50.4 54.7 56.9 57.8 58.7 57.7 57.6 57.4

Pascal Sentence
Image → Text 69.8 71.6 71.2 68.3 67.4 65.5 65.5 64.0
Text → Image 69.6 70.9 69.4 68.5 67.8 67.0 65.2 66.0
Average 69.7 71.3 70.3 68.4 67.6 66.3 65.4 65.0

PKU XMedia
Image → Text 85.7 89.6 90.5 89.1 88.7 89.2 89.0 91.3
Text → Image 87.1 89.1 90.6 89.9 89.4 89.5 90.7 92.7
Average 86.4 89.4 90.6 89.5 89.2 89.4 89.9 92.0

PKU XMediaNet
Image → Text 55.9 57.8 60.1 59.8 60.2 60.2 60.5 61.2
Text → Image 56.8 57.7 60.0 59.6 60.2 60.7 61.5 62.3
Average 56.4 57.8 60.1 59.7 60.2 60.5 61.0 61.8
5. Conclusion

This paper presents a simple but effective approach called
raph Representation Learning (GRL) for cross-modal retrieval.
his method inherits the previous cross-modal retrieval idea that
aps the different types of media data features into aligned

epresentation space. However, we realize this idea by graph
mbedding strategy, which first reconstructs the original data
nto a cross-modal graph and then embeds each vertex into a low-
imensional vector in common representation space. Besides, to
160
make the cross-modal graph more reasonable for representing
original features and their relationships, we design an FTLN model
to transfer the original feature into latent hidden feature. The
graph connections consist of three parts, semantic connection and
pairing connection of training set, and similar local connections
for all instances. By embedding the nodes into unique vectors,
the features of various modalities are located in the aligned rep-
resentation space. Compared with the state-of-the-art methods,
the experimental results show that the proposed method obtains
excellent performance.
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